

138kV Cyclone Substation Design

Team: Chandler Cox (*Meeting Facilitator*), Owen Swanberg (*Scribe*), Mohammad Habib (*Report Manager*), Zachary Lewis (*Report Manager*), Aladdin Adam (*QA/QC Manager*), Joseph Miller (*Head Engineer*)

Sponsor: Burns & McDonnell – Riley O'Donnell & Tom Kelly

Advisor: Dr. McCalley

Scope and Project Need

Design a substation to interconnect a 69 kV wind farm in Ames, IA to Cedar Falls, IA and Des Moines, IA via 138 kV transmission lines.

The substation will bring renewable energy into the homes and businesses of residents in Cedar Falls and Des Moines reducing the need for the consumption of fossil fuels.

https://nmreta.com/transmission-lines/

Physical Components & Non-Functional Reqs.

Figure: Power Transformer

Figure: Circuit Breaker

Figure: Capacitively coupled voltage transformer

Figure: Wave Trap

Figure: Station service voltage transformer

Figure: Motor operated air break switch

Substation Configuration Requirements

- Initial breaker configuration: 3-position ring-bus
- Future breaker configuration: 6-position breaker-and-a-half

Figure: 6-position breaker-and-a-half

Conceptual/Visual Sketch

Conceptual Design Diagram

Figure: Design workflow

System Design - Relay Specification

BURNS MSDONNELL Relay Specification

Iowa State EE Senior Design Project Project ID: Description: Substation Design Tom Kelly & Riley O'Donnell Author: Revision Date: 7/21/2020

PROJECT SCOPE

The new Cyclone Substation will be a 138kV three breaker ring bus with a 138/69kV transformer (XFMR1) and a single 69kV line exit with a breaker. The station should be physically designed for the future expansion to a breaker-and-a-half arrangement.

Primary (DCB over Power Line Carrier) line protection for the 138kV Des Moines line exit will use a SEL-321 relay. Backup line protection for both the line exits will use a SEL-311B relay.

Primary and Backup line protection for the 69kV Cedar Falls line exit will be SEL-311L relays. Fiber optic cable will be used for relay communication between substations for both primary and backup relays.

SEL-352 relays shall be used for breaker failure protection on the 138kV ring bus breakers as well as the 69kV exit breaker. Separate primary and backup DC protection paths should be used to for all 138kV breakers and all protection schemes.

MAJOR EOUIPMENT

- 1. Install three (3) 138 kV circuit breakers (B1, B2 & B3), to be used for the transformer high-side.
 - The standard short circuit rating is sufficient.
 - Four (4) sets of 1200/5 ampere, MR, C800 accuracy class, rf=2.5 CT's per breaker (two (2) CT's per bushing)

2. Install one (1) 69 kV circuit breaker (B4), to be used for the transformer low-side.

- The standard short circuit rating is sufficient.
- Four (4) sets of 1200/5 ampere, MR, C800 accuracy class, rf=2.5 CT's per breaker (two (2) CT's per bushing)
- 3. Install three (3) Coupling Capacitor Voltage Transformers (CCVT's) (one per phase) on all three of the ring bus exits.
 - CCVT's to be rated 80.5,500V phase-to-neutral on the primary.
 - CCVT's to have two (2) secondary windings rated at 115/67V.

4. Station surge arrester specification to be determined by substation engineer.

- 5. All substation equipment and bus should be rated for at least 2000A. All line conductor and equipment should be rated for at least 750A.
- 6. Install one (1) station service transformer on the 138 kV bus side of the 138/69kV transformer MOAB to provide AC station service and relaving potentials

40250 – 120/240V, 100 kVA.

-	
Project ID:	Iowa State EE Senior Design Project
Description:	Substation Design
Author:	Tom Kelly & Riley O'Donnell
Revision Date:	7/21/2020

------138 kV Breaker B3 (XFMR1/Des Moines) Breaker Failure-to-Trip Relay

- Schweitzer SEL-035210325HXX4XX. (BFR/B3) Breaker Failure relay, suitable for use at 125V DC. To be used for 138 kV Breaker B3 failure-to-trip protection.
 - 1. Access to back of Schweitzer relays is required for PC connection.
- 2. Appropriate test/disconnect switches are required to provide connections for relay testing and isolation

CT - 138 kV Bkr B3, XFMR1 side, top CT (Backup line Relay CT), 1200/5 (240/1)

- PT Wire the potential circuit of the SEL-352 relay to the 138 kV Des Moines line CCVT Y-Winding, 1200/1
 - One-Line
- **Output Contact Assignments:**
- OUT101 Trip 138kV Bkr B3 86BFT aux relay OUT102 - Re-trip Bkr B3
- OUT103 Enable Bkr B3 Close (Svnc Check)
- OUT104 Init Send TT (Des Moines Line)
- OUT105 spare
- OUT106 spare OUT107 - spare

- Input Contact Assignments: IN101 - Bkr B3 Breaker Failure Initiate
- IN102 Bkr B3 Status 52/a contact
- IN103 spare
- IN104 spare
- IN105 spare
- IN106 spare

Schematic

Electroswitch series 24 switch to be used as a Failure to Trip cutoff switch (FT/CO). This switch shall be utilized to disable the Failure to Trip relaying for testing and maintenance. Escutcheon to read "ON" and "OFF" with the "ON" position to be in the twelve o'clock position.

Electroswitch Series 24 Lock-Out Relay (86BF/B3)

- Contacts to be utilized as follows: Trip Bkr B1 and Block Close
 - Trip Bkr B2 and Block Close
- Trip Bkr B4 and Block Close
- Block Close Bkr B3
- Send DTT to Des Moines via primary SEL311L
- Send DTT to Des Moines via backup SEL311L
 - SCADA Indication (closed in "OFF" position) Panel

Design Analysis/ Testing

Three major reviews are conducted:

- Individual review Sub-team reviews deliverable
- Peer review Whole design team reviews deliverable
 Acceptance testing Client reviews the deliverable

In each review, the following tests are conducted:

- Unit testing Review the deliverable against itself ensuring it meets design requirements
- Interface testing Review how the deliverable references others

Measuring Success

Physical Design

- Does the design meet configuration and equipment requirement?
- Does the design allow for future expansion?

Protections and Controls Design

• Does the design implement the relay functions specified by the client?

Year-End Accomplishments

We **designed** a substation:

- Physical design (first semester)
- Protections and Controls (second semester)

Design Strategy				
Physical Design	Protections and Controls			
Conduct various studies	Become familiar with relay specification			
Review component specifications	Interact with the client to gain insight			
Understand client requirements	Focus on protection of electrical assets			
Focus on physical and electrical safety				

Conclusion

- Designed a substation through a set of deliverables
- Implemented industry standards in the design
- Added an emphasis on safety
- Created and carried out a testing strategy for our deliverables

https://sdmay21-04.sd.ece.iastate.edu/docs.html

Slide Appendix

Project Schedule

Limitations and Future Work

Limitations:

- Lack of electrical testing for protection system
- Focus purely on design over construction

Future Work:

- Procure materials and construct the substation
- Design the SCADA system
- Simulate the substation and controls via PLECS/ PSCAD/ SKM

Outcomes of Testing

One-Line

- Contradictions in the protection specification identified
- Currents enter relays on the left and potentials on the top Plan-View
 - Additional bus supports were required for long bus runs
- Move control building

Foundation Layout

- Drawing title block needed updating Conduit/Raceway
- Add conduit for future expansion

Standards and Aiding Materials

Standards

- IEEE 80 Substation grounding standard
- IEEE 998 Substation lightning protection standard
- IEEE 450, 484, 485, 1187, 1188 Battery Sizing

References

- Client protection specification
- Design Guide for Rural Substations Prepared by BMcD

Industry Grade Software

- AutoCAD
- Bluebeam
- CDEGS

Component Selection

The following equipment is specified by the design team under the criteria that it meets client requirements and publicly available documentation is present:

- Capacitor Coupled Voltage Transformers Arteche DDB 145
- Bus Conductor AFL Global 3-inch Schedule 80
- Wave Trap Trench
- Station Service Voltage Transformer ABB Kuhlman

Figure: Wave Trap

Figure: DDB 145

Drawing Stockpile

System Design - One Line Representation

System Design - Schematic

System Design - Panel Layout

System Design - Elevation View

SECTION A TRANSFORMER ELEVATIONS

System Design - Lightning Protection

System Design - Grounding

Standard Alert:

IEEE 80 - Guide for Safety in AC Substation Grounding

System Design - Fence

System Design - DC Study

Standard Alert:

IEEE 485 - Recommended Practice for Sizing Lead-Acid Batteries for Stationary Applications

Continuous Loads						
Quantity	Device	DC Load Current (A)	Total (A)			
12	Relay & Meter Load	2.0776	24.931			

Momentary Loads						
Quantity	Device	DC Load Current (A)	Total (A)			
6	Emergency Lightning	0.256	1.536			
7	Start Breaker Motors	9.8	68.6			
7	138 kV and 69 kV Breaker Trip Coil #2 (Close)	1.9	13.3			

